Loading...
Loading...
large-volume-liquid-hydrogen-releases-key-results-and-outcome-of-modelling-exercises
large-volume-liquid-hydrogen-releases-key-results-and-outcome-of-modelling-exercises

Large volume liquid hydrogen releases: Key results and outcome of modelling exercises

Decarbonising shipping and transportation remains a significant challenge as storing electrical energy from renewables in significant capacity makes it of little use against the requirements of running a ship at sea where space and load requirements inhibit battery options. Liquid hydrogen (LH2), commonly used as fuel in the space industry, forms one potential solution where the required energy density/volume can feasibly be met for ships of all sizes1.

However, its use in the maritime sector poses significant technical and safety challenges around the scale of operations, number of usage points, and its proximity to personnel. Potentially critical scenarios for LH2 on ships can be described through a variety of phenomena including outflow, dispersion, accumulation, cryogenic exposure, ignition potential, explosion, and fire.

In 2018, the NPRA gave the go ahead for a hydrogen-electric ferry to serve one of the routes along the coast of Norway.2 One concept for zero-emission ferry transportation involves LH2 as a concentrated form of hydrogen storage (see below image).

... to continue reading you must be subscribed

Subscribe Today

Paywall Asset Header Graphic

To gain access to this article and all our other content, you will need to subscribe to H2 View.

From the latest print editions, to 24/7 online access to exclusive interviews, authoritative columnists and the H2 View news archive, a subscription is the best way for you to stay up to date with developments in the hydrogen community.

Please wait...